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SUMMARY & CONCLUSIONS 
 

Ideally, planning and managing the design and 
development of a complex systems should: 
•  Consider the entire lifecycle (design, development, 

testing, integration, deployment, operation and 
decommissioning). 

•  Take risk and reliability into account, as well as more 
traditional measures such as cost and performance, when 
making tradeoff decisions. 

•  Provide understanding, and therefore motivation, as to the 
purpose of design artifacts (that piece is there to…) and 
development activities (we’ll be performing this test to 
…). 
A key enabler to all of the above is the ability to relate 

design and development choices to risk and reliability 
predictions. If the number of choices were small (e.g., 
selection between a handful of alternatives) it would suffice to 
perform reliability analysis on them individually, and view the 
results side-by-side. The challenge is that in many cases the 
number of design and development alternatives is large. In this 
context, the problem of relating reliability predictions to 
design and development choices is non-trivial. 

 Ongoing work towards a solution to this problem is the 
focus of this paper. Over several years we have developed a 
risk-based model the hallmark of which is the explicit 
representation of risk mitigations as options. We describe how 
this model functions, and the major implications of making 
mitigation options first class objects within an (otherwise 
relatively simple) analysis model. We also describe 
elaborations to this model’s representation of risks, notably by 
the incorporation of fault tree notions. These improve the 
fidelity of the designs we are able to represent, and also offer 
the ability to represent design alternatives within the same 
framework. Finally, we describe the connections we are 
building between our risk analysis tool and other risk tools. 
The latter have greater strengths in their ability to represent 
and calculate over more elaborate risk structures, while our 
approach lends to them the aforementioned explicit treatment 
of the various forms of options for risk reduction. 

 
1.  INTRODUCTION 

 
Our work originated as a method intended for planning 

the quality assurance of hardware systems [1]. In this context 

there are many possible assurance activities. Some focus on 
the prevention of defects – for example, up-front planning, 
adoption of design standards, configuration management, 
training, etc. Others focus on the detection of defects – either 
to detect latent defects in a system (and so be able to correct 
them before actual deployment of the system), or to increase 
confidence that such defects are not present. For example, a 
wide gamut of reviews, design walkthroughs, tests, 
inspections, analyses, etc. can be applied to systems and their 
components.  

Generally the total costs (e.g., time and budget) were all 
these activities and practices to be adopted would far exceed 
the resources available. In order to help in planning which of 
these activities and practices to adopt, Cornford developed the 
“Defect Detection and Prevention” (DDP) process. It treats 
assurance activities and practices as options, each of which are 
linked to the kinds of defects they prevent or detect. Each 
option-defect link is accompanied by a quantitative measure, 
of effect – the proportion by which the option will prevent or 
detect reduce the defect. These defects are in turn linked to the 
system-level objectives that they threaten. Again, each defect-
objective links is accompanied by a quantitative measure, of 
impact – the proportion by which the defect, were it present, 
would detract from attainment of the objective. This scheme is 
illustrated abstractly in Figure 1.  

Figure 1 – Influence diagram of DDP concepts 
 
The net result is the ability to estimate both the cost of a 

selection of options (what resources it would take to perform 
that selection), and the benefit of that selection (in terms of 
attainment of objectives). The latter is calculated by taking 
into account the defect reducing effects (preventions and 
detections) of the selected options, and in turn the (reduced) 



extent to which the defects that evaded prevention or detection 
would have on attainment of objectives.  

Cornford’s initial experiments in 1998 showed the merits 
of this approach in the area of assurance planning, where 
options are choices among the gamut of assurance-related 
activities. It makes apparent situations where the selection of 
options is less than ideal – for example, where overly-many 
options are selected to reduce the same defect, while other 
defects go relatively unaddressed. It also clarifies the purpose 
of the selected options – namely as preventions or detections 
of the kinds of defects to which they are linked. These two 
areas of insight help improve both the planning and conduct of 
assurance activities, by helping to arrive at a cost-effective 
selection of them, and by clarifying the purpose(s) of the 
individual assurance activities themselves. In these 
experiments spreadsheets were used to store and calculate 
with the quantitative information. These proved sufficient to 
demonstrate the value of the approach, but suggested ways in 
which custom software should be developed to enable the 
process to proceed more smoothly. Such software has since 
been developed [2]. In the years since we have applied this to 
a wide range of problems, most often to systems and 
technologies at a relatively early stage in their development 
lifecycles to help plan their subsequent development. 

The relevance of this approach to risk and reliability 
stems from its probabilistic treatment of defects, using the 
traditional decision statistic risk factor of expected loss [3]. It 
treats a defect as having a likelihood of occurrence (which 
may be decreased by adoption of the assurance options), and 
impacts on various objectives. The sum total of those impacts 
is equivalent to the traditional risk notion of “severity” (a.k.a. 
“consequence”). In subsequent work, we have broadened the 
area of application to early-phase project planning, and for 
such purposes often switch terminology accordingly, using 
“failure mode” or “risk” in place of “defect”, and “mitigation” 
in place of “option”. Indeed, this approach is very much 
motivated by techniques drawn from the Probabilistic Risk 
Assessment (PRA) community (e.g., for an overview, see [4]). 
It is the explicit treatment of (defect- or risk-reducing) options 
that sets this work apart from traditional PRA.  

In the sections that follow we investigate issues that arise 
from making explicit the options for defect-reduction (or 
equivalently, risk-reduction), and the work we are performing 
to extend the model to incorporate (or connect to other tools 
with) more elaborate representations of risk. 

 
2.  IMPLICATIONS OF MAKING OPTIONS EXPLICIT 
 
The focus of most of the mainstream work on risk and 

reliability has been on methods to assess the risk or reliability 
of a given design. Adding into these approaches the explicit 
treatment of defect- or risk-reducing options has benefits; 
these are outlines, along with what it takes to realize them. 

 
2.1  Benefits of making options explicit 
 

The main benefits of adding into these approaches the 
explicit treatment of defect- or risk-reducing options are as 
follows: 

Ability to incorporate consideration of design practices 
when performing risk and reliability calculations. For 
example, the effects of preventative measures can be assessed 
in terms of their reduction on the prevalence of defects; test, 
analyses, inspections, reviews, etc., can be assessed in terms 
of their ability to detect defects (in advance of deployment and 
operation of the system, and therefore in time to correct them).  

Ability to perform tradeoff decisions that take risk into 
account. In the DDP approach, risk is an intermediate concept 
– intermediate between the objectives whose attainments it 
threatens, and the options whose adoption (at a cost) decreases 
risk. The overall DDP model allows for the computation of 
benefit(s) (expected attainment of the specified objectives), 
and costs (the resource cost(s) of the selected options). By 
varying the selection of those options, it is possible to consider 
alternate points within the space of possible development 
decisions, each with their own costs and benefits. 

Ability to trace the purpose of the selected risk- or defect- 
reducing options. Within the DDP model these trace to the 
risks or defects they reduce, which in turn trace to the 
threatened objectives. As a result, a development activity (e.g., 
a preventative measure such as training) can be traced to the 
defects whose prevalence it decreases, and in turn to the 
increase in expected attainment of objectives that will accrue. 
The DDP model is capable of showing the net benefit of early-
lifecycle risk-reduction measures in terms of both their 
improvement to the ultimate quality of the final product, and 
their net reduction in development costs (when the prevention 
or early detection of problems saves much more costly repair 
should they be discovered later in the lifecycle).  (For 
examples drawn from the software assurance domain, see [5]).  

In order to attain the above benefits, it is necessary to (i) 
gather the information (e.g., the information on the risk-
reducing effectiveness of the various options), (ii) perform the 
appropriate calculations with that information, and (iii) present 
the results in such a way as to support decision-making over 
those options. We discuss these next. 

 
2.2  Information elicitation 

 
 The DDP approach requires gathering information that 

would not normally be asked for, in particular, the information 
on the risk-reducing effectiveness of the various options. In a 
traditional risk assessment, what would be asked for would be 
the risk status of the artifact itself (e.g., the reliability 
anticipated of an appropriately qualified part purchased from a 
trusted vendor). Instead, the DDP approach calls for asking for 
the risk-reducing effectiveness of the steps that went into that 
artifact’s construction and qualification. It takes additional 
time and effort to gather this information. In practice we 
perform detailed information gathering on just those aspects 
pertinent to the case at hand – typically those which represent 
the novel aspects of the design being studied.  

For example, one of our studies was applied to determine 
the risks of using a terrestrial technology in a space setting, 
with the objective being to determine the set of qualification 
tests needed to perform on the candidate technology. The 
focus of concern was on whether the technology would 
survive the temperature swings if used on the surface of Mars 



(where the day/night temperature swings are quite large, and, 
relative to Earth, have unusual low points). Thus we spend the 
majority of the time and effort identifying potential failure 
modes that would be caused by temperature swings, and 
assessing the effectiveness of various prevention and detection 
measures against those failure modes. We spent relatively less 
time and effort on other failure modes (e.g., that the 
technology would exceed the mass and size limitations) 
which, while no less important, were felt to be better 
understood. To get an idea of scale, this study (a fairly typical 
one) took into account 50 distinct objectives, 31 defects, and 
58 options for development practices. Approximately 500 
quantitative impact links connected defects to objectives, and 
300 quantitative effect links connected options to defects. 

Gathering this amount of information is typically done in 
several half-day sessions, during which experts representing 
each of the disciplines involved are simultaneously present. 
The DDP software helps by allowing for on-the-fly capture of 
information as expressed by the experts. For details, see [6]. 
 
2.2  Risk calculations 

 
Calculation over the accumulated information is done by 

the DDP software. Because its risk model is relatively simple 
(albeit voluminous – with hundreds or thousands of items), for 
a given selection of options it is fast to compute the cost and 
benefit – typically less than one second on a laptop computer.  

 
2.3  Decision making 

 
The purpose of gathering and calculating with this 

information is to help in decision making. The primary area of 
decisions that this approach supports are those of which  
options to select, the issue being that in most circumstances 
the cost were all the risk-reducing options to be selected 
would far exceed the available resources, hence the need for 
judicious selection among those options. On occasion it 
becomes apparent that, for a limited amount of resources and a 
set of high expectations for objective attainment (both of 
which are recurrent phenomena in our setting), there does not 
exist any selection from among the options that stays within 
the resource limits and achieves the requisite levels of 
objective attainment. In such situations another option is to 
discard some of the objectives (i.e., reduce expectations). In 
our studies of technologies, this may correspond to limiting 
somewhat the intended range of application for the technology 
in question. At the project/mission level, this may 
corresponding to discarding, or downgrading, some of the 
overall objectives. 

The key to enabling this kind of decision-making is the 
calculation of cost and benefit of a given selection of options. 
As mentioned above, this is speedily performed by the DDP 
software. The DDP software offers several ways of visualizing 
the information calculated from a DDP model, discussed next. 

 
2.3  Information visualization for decision-makers 
 
Several forms of visualizing the results are supported to 
enable human decision makers understand the status of a 

given selection of options: in addition to displaying the overall 
figures of cost and benefit, DDP also can display the status of 
individual elements – for each objective, the degree to which 
its attainment is detracted from by the extant risks; for each 
risk, the sum total reduction in objective attainment 
attributable to it; for each option, the increase in objective 
attainment that accrues from the selection of that option 
(because it decreases risks’ severities and/or likelihoods, and 
hence leads to increased objective attainment).  

The DDP software employs straightforward bar-chart 
presentations of these sets of information for a single selection 
of risk mitigation options. They are also effective for 
comparison of a pair of risk mitigation option selections. 
Figure 2 is an example in which the status of 31 risks is shown 
as a series of bars: the height of the green bars indicate the 
initial risk levels (were no mitigation options selected), the 
height of the red bars indicate risk levels for one of the 
options, the yellow shows where that option’s risk is lower 
than the other option, the black shows where it is higher than 
the other option.  

Figure 2 - bar chart risk comparison 
 
For detailed scrutiny of several alternate risk mitigation 

option selections we switch to use of Kiviat charts (a.k.a. 
“Spider” charts). Figure 3 shows the individual risks’ status 
corresponding to three selections of mitigation options (the 
points on the radial  lines joined by the blue, purple and black 
line segments respectively), plus the completely unmitigated 
risk status (indicated by the green line segments). Further out 
along a radial line denotes a larger value (in the DDP tool, a 
numerical scale is located on a separate portion of the display). 

Figure 3 - risk status display of several option selections 
 
Hand-selection and detailed scrutiny of mitigation options 

is not necessarily the most effective way of arriving at an 



optimal selection of mitigations. The challenges stem from the 
sheer number of possible selections (for 58 mitigation options, 
there are 258, approximately 1017, possible selections), and the 
intertwined nature among the objectives, risks and mitigation 
options (a recurring phenomena). In response, we have 
incorporated heuristic search into the DDP software, using 
which we can automatically locate near-optimal selections of 
mitigation options. For example, for a given cost bound, we 
use heuristic search to locate the selection of mitigations that 
maximizes attainment of objectives while costing no more 
than that cost bound. Our current implementation uses 
simulated annealing [7] as the heuristic search mechanism. We 
have also experimented with Genetic Algorithms, and a form 
of machine learning. Generally, these take several minutes to 
arrive at a reasonably near-optimal solution. For more details 
of our studies of search techniques in this setting, see [8]. 

In order to gain an understanding of the overall 
cost/benefit tradespace, we use a series of heuristic searches 
spaced across the cost spectrum. This is computationally 
expensive, taking several hours on a typical DDP dataset. The 
plot, for the same dataset as used in the previous figures, is 
seen in Figure 4. Each of the approximately 300,000 
individual points in the black “cloud” (a single point color is 
used throughout) corresponds to a selection of mitigation 
options. For any given cost (position along the horizontal 
axis), the optimal solutions (selection of mitigation options) 
are those that lie closest to the top of the chart. Hence the 
upper boundary of the black cloud indicates the optimal 
frontier - also referred to as the “Pareto front” [9]. This is very 
revealing as to what levels of objective attainment can be had 
for varying levels of funding. Apparent are phenomena such 
as a “law of diminishing returns”, where the frontier levels off 
– increasing the funding only marginally increases the 
possible benefit. Conversely, at low cost levels, only modest 
increases in funding lead to significant improvement in the 

benefit that can be attained. 
A wealth of information underpins these charts. For 

example, in Figure 4 each of the hundreds of thousands of 
points represents a distinct selection from among the 58 
mitigation options. We have explored mixtures of further 
visualization and computation to gain additional insights from 
this data. In [10] we describe using metrics of “difference” 
between selections (based on the differences between the 
options they each employ) to identify interestingly dissimilar 
designs and clusters of designs. In [11] we describe  a 
visualization that highlights the contributions of individual 
mitigation options within the cost/benefit tradespace. To date 
we have preferred to build these capabilities into the DDP tool 
itself, but have also begun to experiment with utilizing 
sophisticated information visualization capabilities that others 
have built, e.g., we have experimented with ATSV (the ARL 
Trade Space Visualizer) tool from the University of 
Pennsylvania [12] to examine large sets of selections. 

 
3.  EVOLUTIONS OF THE DDP MODEL TO EXTEND ITS 

REPRESENTATION OF DESIGN 
 

Our core model, discussed above, has a relatively simple 
representation of risk (equivalently, defects) – atomic entities 
that were independently related to the objectives they 
detracted from, and the mitigation options (e.g., standards, 
tests, analyses) that would reduce those risks. We recognized 
the need to expand our model to better represent designs. We 
have explored two paths towards this end: elaborations within 
the DDP model itself, and interfaces to complementary 
models. 
 
3.1  Elaborations within the DDP model - realization 

 
The key step we have taken in this direction is 

introduction of 
more structure 
into the 
representation of 
the risks in our 
model. We 
adopted the 
notions of fault 
trees [13], in 
particular the 
“And” and “Or” 
gates from which 
fault trees are 
constructed. In 
place of the 
simple layer of 
atomic risks, we 
now have fault 
tree structures, as 

sketched 
abstractly in 

Figure 5. 
The root 

Figure 4 - cost/benefit tradespace 



nodes of these fault trees represent failures with potential for 
impact on objectives. 

Figure 5 - fault trees within the DDP model 
 Their likelihoods are computed from the structure of the 

tree, and the likelihoods of the leaf nodes. Thus in DDP, the 
links that connect risks to objectives now connect the roots of 
fault trees to the objectives, where occurrence of those root 
events would detract from the attainment of those objectives. 
(On occasion it is also appropriate to link non-root nodes of a 
fault tree to objectives). The unique feature of DDP – its 
explicit treatment of mitigation options linked to the risks they 
effect (generally, reduce) – is retained in this elaboration; the 
mitigation options are linked to the appropriate nodes in a 
fault tree, depending on their nature. When a mitigation is of 
the kind that reduces the severity of a risk, it is connected to 
the root of the fault tree, and serves to diminish the severity of 
the impacts that fault has on objectives. When a mitigation is 
of the kind that reduces by prevention the likelihood of 
adverse events (faults), it is linked to the leaf-nodes 
representing those faults, and (when selected) serves to 
decrease their likelihoods of occurrence. Since the likelihoods 
of the root nodes are calculated from the structure of the fault 
tree, and the likelihoods of the leaf nodes of the tree, effecting 
the likelihoods of leaf nodes is a way of effecting the 
likelihoods of the root nodes, and therefore their overall 
expected detraction from objectives. Finally, when a 
mitigation is of the kind that reduces by detection and repair 
the likelihood of adverse events (faults), it is linked to 
whatever level in the fault tree that detection is applied. For 
example, if the leaves of a fault tree represent potential faults 
in individual components, then unit testing of a component 
(followed by repair of any problems found) will yield a net 
decrease in the likelihood of such faults remaining in that 
component. Similarly, if a system test is performed, any 
problems it finds will be repaired in the components 
themselves, so the net result is again a net decrease in the 
likelihood of the faults remaining in those components, and 
hence in the system. For further details, see [14]. 

The considerations that stemmed from a multitude of risk 
mitigations options in the original kind of DDP models 

continue to apply here – namely, the challenge of determining 
cost-effective selections. Fortunately, having extended the 
DDP calculations of risk to perform the fault tree likelihood 
calculations, DDP’s other mechanisms continue to apply. In 
particular, optimization utilizing heuristic search is still 
available. The introduction of fault trees into the risk layer 
complicates the internal DDP calculations (of risk likelihoods, 
and therefore of benefit, measured as the sum of objective 
attainment levels), but from the point of view of the optimizer, 
a DDP model continues to be utilized to compute the cost and 
benefit of a selection of mitigation options, just as before. 

We are experimenting with ways to give the users 
detailed insight into the individual contributions of the 
elements of the fault tree structures themselves. One of these 
uses color-coding of the fault tree elements to indicate 
likelihoods. Figure 6 illustrates this with a “zoom-in” to a 
small portion of a larger fault tree. The colors are allocated on 
a red-to-green spectrum, with red representing the higher 
likelihood values, green the lower ones (in the actual DDP 
tool, a numerical scale is located on a separate portion of the 
display) . Thus we can see that the red-colored “Or” gate is 
one of the larger contributors to likelihood in the visible 
portion of this structure; in turn, its leftmost child is an orange 
color, whereas the other two children are colored with 
greenish tints – hence we can see that its leftmost child is the 
most likely of the three. 

Figure 6 - zoom in on fault tree elements 
 
3.1  Elaborations within the DDP model - utilization 

 
Having added fault trees to the DDP model, we use them 

to expand DDP’s ability to represent design and development 
alternatives.  

The most obvious of these is to represent the structure of 
a proposed design in the manner for which fault trees are 
traditionally applied. That is, the manner by which fault(s) in 
combination give rise to failures (e.g., as in systems with built-
in redundancy to make them fault tolerant). 

We also have found a use for them to represent design 
alternatives. To represent a design alternative, we add both the 
purpose that design fulfils as a risk (which more intuitively 
could be thought of as a problem), and the design option itself 
as a mitigation option that, if selected, mitigates (solves) that 
risk.  

For example, if we have need for electrical power, then 
“lack of electrical power” is added as a DDP risk, and the 
design alternatives for providing power are added as DDP 
mitigations, each linked to that same risk. Thus if we didn’t 
select any of those design alternatives, the “lack of electrical 
power” risk would be unmitigated, and presumably detract 
from attainment of all the objectives requiring electrical 
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power. If we select one of those design options, the “lack of 
electrical power” risk will be mitigated. If we select more than 
one of those design options, the “lack of electrical power” risk 
will be doubly (maybe with no net improvement over singly) 
mitigated. If one power source is sufficient, and since, 
presumably, the costs of selecting more than one will 
accumulate, the usual way of locating cost-effective mitigation 
option selections will home in on the choices among single 
selections of power sources – i.e., handle them as alternatives.  

We can also represent risks specific to a given design 
alternative (for example, some kinds of electrical power 
sources may be potential sources of dangerous levels of heat, 
which would pose risks to other components in the design). To 
do this, we include those risks as DDP risks, but give them an 
initial likelihood of occurrence of zero. Then, each design 
option whose selection would trigger that risk is linked to it by 
a DDP effect link which increases, rather than decreases, the 
risk likelihood. DDP effect links that increase risks were 
already present within the DDP model, intended to represent 
things like tests with potentially detrimental side effects (e.g., 
vibrating a piece of equipment in a shake test may be an 
effective way of revealing the presence of certain defects, but 
may itself create damage, especially if done incorrectly). Here 
we make use of this same capability to turn “on” risks. 

The net result is that we are able to represent within the 
same DDP framework both development practices 
(preventions, tests, analyses etc) as options, and design 
alternatives as options. 

To date we have dealt primarily with risk factors of 
expected loss, as described herein. We have recently 
incorporated the notion of ranges of values (of defect 
likelihoods, impacts, effects and costs). Using these we can 
calculate best-case and worst-case extremes. For example, the 
best-case extreme is calculated assuming the low-ends of 
defect likelihoods, the low-ends of impact values, the low-
ends of costs, and the high-ends of effect values (high-ends of 
these because the higher effect value reduces a defect more, 
and so is the best-case). However, this incurs the extra time 
and effort to elicit ranges (rather than a single value). We are 
able to minimize this by first eliciting just the expected values, 
performing sensitivity analysis on them, and eliciting ranges 
for only those values to which the overall computations are 
most sensitive. 

As pointed out by a reviewer of this paper another avenue 
worthy of exploration is of time-dependent failure rates, as 
would be needed for calculations of availability and reliability. 
This represents an area of future work. 
 
3.2  Interfaces to complementary models 

 
We have also explored an approach in which we interface 

to other models, ones that already have in place structures 
(such as fault trees and event trees) but which lack an explicit 
representation of options. This allows us to call upon the 
power of those other models to represent and reason over 
those structures, while retaining our ability to explore 
(compare, optimize over, etc) options and their combinations. 

Our most extensive such study to date has been 
connecting DDP with the dynamic fault tree tool 

Galileo/ASSAP, developed at the University of Virginia: [15]  
and [16]. Fault trees are constructed in DDP, written out in the 
textual format that the Galileo/ASSAP tool understands, 
opened up in Galileo/ASSAP for it to evaluate likelihoods, 
and the evaluation results written back into a file for DDP to 
read. We have made this information flow an automated 
process. 

The net result is that DDP is able to utilize the fault tree 
calculations already implemented in Galileo/ASSAP. In the 
case of large fault trees, with numerous “shared” nodes (where 
the same fault plays a role in multiple places within a tree), the 
Galileo/ASSAP implementation is much more efficient than 
DDP’s, making use of binary decision diagrams (BDDs) to 
solve static sub-trees [17] rather than the naive DDP 
implementation. Meanwhile, the DDP contribution to this 
pairing of the two tools is its representation of the risk 
reducing mitigations as options, and the built-in simulated 
annealing optimizer can be brought to bear. 

In ongoing work we are following a similar approach to 
connect DDP to another tool, one that represents event-
consequence trees. Again, the purpose is to take advantage of 
the pre-built analysis capabilities offered by that other tool, in 
conjunction with DDP’s explicit representation of risk 
mitigations as options. 
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